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a b s t r a c t

A scaling analysis is presented for the transient boundary layer established on a vertical wall following
non-instantaneous heating in the form of an imposed wall temperature which increases linearly up to
a prescribed steady value over a prescribed time. The scaling analysis is verified by comparison with
numerical solutions of the full equations of motion and energy. The analysis reveals that, if the period of
temperature growth on the wall is sufficiently long, the boundary layer reaches a quasi-steady state before
the temperature growth is completed. In this mode the thermal boundary layer at first grows in thickness
and then contracts with increasing time, and the fluid acceleration also changes character. If the wall
temperature growth period is sufficiently short, the boundary layer commences differently, but after the
wall temperature growth is completed, the boundary layer develops as though the start up had been
instantaneous. In both cases, the ultimate steady state is the same as if the start up had been instantaneous;
however the different transient nature may have implications for the stability of the boundary layer or of the
subsequent development of the flow in a cavity of which the wall is one boundary.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The flow induced adjacent to a heated vertical wall is one of the
classical problems of heat and mass transport, with relevance to
both engineering applications and fundamental fluid mechanics. Of
particular interest is the configuration of a suddenly heated wall in
an initially stationary and isothermal ambient fluid; an under-
standing of the development of the subsequent flow is the basis for
the design of heat exchangers and many other industrial applica-
tions, as well as providing insight into the properties of the
developing boundary layer. Consequently, considerable attention
has been paid to this problem in the literature. Much of the focus of
this has been in the context of the way in which the boundary layer
changes its state from a one dimensional unsteady [25] to a two
dimensional steady flow [21] by means of the passage of the
Leading Edge Effect (LEE), and a number of papers, including those
of [9–14], dealt with various aspects of this question for both
suddenly applied isothermal and isoflux wall boundary conditions.
The issue was also discussed in the context of a vertical wall in
a rectangular cavity by [7,22,26,27].

One of the important issues in this discussion was a determi-
nation of the time at which the boundary layer reached steady
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state. The accurate calculation of this, according to the hypothesis
of [7] and supported by the experiments described in [22] for
sudden isothermal heating, involved the calculation of the wave
speeds of the fastest travelling waves on the boundary layer
resulting from the perturbation of the layer at start up.

A simpler approach to the development of the flow from sudden
isothermal heating is available by means of scaling arguments
similar to those described by [23], in which simple scaling balances
for the various stages of the flow development in a differentially
heated cavity were developed, including the start up of the
boundary layer on the heated wall, the properties of the resulting
intrusions, and the approach to a steady state. The scales for the
boundary layer were verified in a detailed way by [16,17,20].
Similarly, scales for the development of the boundary layer for
sudden isoflux heating were described by [5], and these scales were
verified by detailed comparisons with numerical simulation over
a range of forcing parameters.

These flows may easily be shown to depend on the Rayleigh
number Ra, which measures the strength of the heating, and the
Prandtl number Pr, which defines the relative diffusion of
momentum and heat in the fluid. These parameters are defined later.
For the case of a rectangular cavity, the flows also depend on the
aspect ratio [20].

All of this scaling work was done in the context of an instanta-
neous, that is, a step function, application of either the isothermal
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Nomenclature

g Acceleration due to gravity
H Vertical length scale
Ra Rayleigh number
Pr Prandtl number
T0 Initial temperature
TWall Wall temperature
T Fluid temperature
t Time
tW Ramp time
tC Boundary layer steady state time for an

instantaneous start up
t0 Quasi-steady state time
u,y Horizontal and vertical velocities
ymax Maximum vertical velocity
x,y Horizontal and vertical coordinates
X,Y Horizontal and vertical extent of the computation

domain
n Kinematic viscosity

k Thermal diffusivity
b Coefficient of thermal expansion
DT Final imposed wall temperature difference
dT Thermal boundary layer thickness scale
dT0 Thermal boundary layer thickness scale at time t0

dTW Thermal boundary layer thickness scale at time tW

dn Viscous boundary layer thickness scale
dn0 Viscous boundary layer thickness scale at time t0

dnW Viscous boundary layer thickness at time tW

d Scale of the position of the velocity maximum relative
to the thermal boundary layer thickness

d0 Scale of the position of the velocity maximum relative
to the thermal boundary layer thickness at time t0

dW Scale of the position of the velocity maximum relative
to the thermal boundary layer thickness at time tW

ym Vertical velocity scale
ym0 Vertical velocity scale at time t0
ymW Vertical velocity at time tW

Dt Computational time step
Dx,Dy Computational horizontal and vertical mesh size
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or isoflux boundary condition on the vertical wall. The reality is that
this is not possible to achieve physically, and thus consideration
needs to be given to the case where the heating is applied over
some non-zero time period. Further, the verification of scaling
analysis has normally been carried out for fixed Pr, and the
dependence on varying Pr has to date not been properly tested.

It is worth noting that for the infinite plate version of all of these
transient flows closed form solutions may be available. These are
often complex and the dependence of the flow on the various
parameters is not obvious; one of the benefits of a scaling analysis
of the flow is that the various mechanisms governing the flow are
revealed and the parameter dependence is clarified.

In this paper, new scaling for the development of the boundary
layers on a vertical wall with isothermal heating applied over a time
scale tW is described. The analysis is restricted to the case with
Pr [ 1. The scaling properly incorporates the effects of varying Pr
by examining the balances in more detail than previously consid-
ered. The resultant time, velocity and length scales for the
boundary layer both during and following the ramp time for
isothermal heating are verified by numerical simulations. These
verifications are confirmed over a range of parameter values.

A companion paper will deal with the case of the Pr dependence
of the developing flow for the case of instantaneous isothermal
heating [19]. A similar scaling approach for the steady state flow near
a vertical wall with a constant applied heat flux was reported by [1].
Fig. 1. (a) A sketch of the flow adjacent to a semi infinite heated wall. (b) A schematic of
the temperature and velocity profiles normal to the vertical wall. The thermal boundary
layer is O(dT), the viscous boundary layer is O(dn) and d is the scale for the distance between
the maximum velocity and dT. The regions I, II and III are as shown on the figure.
2. Formulation

Under consideration are the flow and temperature fields
adjacent to a heated wall, as sketched in Fig. 1(a). The scaling is
focused on the flow in the boundary layer, sufficiently far from
horizontal boundaries or the leading edge. The full equations of
momentum, continuity and energy, under the usual Boussinesq
assumption, are:
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Initially, the fluid is quiescent and isothermal at temperature T0.
The initial conditions for velocity and temperature are then

u ¼ y ¼ 0
T ¼ T0

�
c x; y t < 0 (5)

On a semi infinite vertical wall, the velocity boundary conditions
are

u ¼ y ¼ 0
x ¼ 0; y � 0
x/N

�
t � 0 (6)

The temperature boundary condition on the wall is specified by the
final wall temperature T0þDT and the time tW over which the wall
temperature increases linearly from the initial value T0 to the final
value, as a ramp function. The temperature far from the wall is
maintained at T0 Thus

T ¼ T0 x ¼ 0; t < 0
T ¼ T0 þ t

tW
DT x ¼ 0; 0 � t � tW

T ¼ T0 þ DT x ¼ 0; tW < t
T ¼ T0 x/N; ct

9>>=
>>; (7)

Under the usual boundary layer assumptions, the equations
become:

vy
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vx2 þ gbðT � T0Þ (8)
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vy
¼ k

v2T
vx2 (9)

with appropriate boundary conditions extracted from (5)–(7).
It is easily shown from dimensional analysis that the flow is

governed by two non dimensional parameters, the Rayleigh
number Ra and the Prandtl number Pr, where

Ra ¼ gbDTH3

nk
(10)

and

Pr ¼ n

k
(11)

where H is an arbitrary length scale, which would normally be
associated with the length of the wall in the cavity case.
3. Scaling analysis

The basic procedures described in [23] are followed here,
modified appropriately for the case of non-instantaneous heating
and to include the dependence on Pr correctly by examining in
more detail the balances between the various terms of the
boundary layer equations (8) and (9).

It is easily shown that for sufficiently small time, the convection
term of (9) is very much less than the unsteady term. Consequently,
initially heat is conducted into the fluid from the heated
wall, forming a thermal boundary layer of thickness O(dT) where,
from (9).
dT wk1=2t1=2 (12)

The resulting buoyancy term in the vertical momentum equation
(8) is OðgbDTt=tW Þ, so long as t< tW. This buoyancy accelerates the
heated fluid over the thickness dT only. Over that scale, the ratio of
the inertial and viscous terms in the vertical momentum equation
is Oð ðym = tÞ =ðnym = d2

T ÞÞ where ym is the vertical velocity scale in
the boundary layer. Using (12), this ratio is less than 1 for Pr [ 1,
and the correct balance in this region is between buoyancy and
viscosity.

The original scaling of [23] simply balanced these two terms to
obtain (for the instantaneous start up) a velocity scale in the
boundary layer. However, to properly incorporate the effects of
variable Pr it is necessary to examine in more detail the structure of
the boundary layer.

First, the temperature will decrease from its wall value to zero in
the interior, over a distance O(dT). The accelerating fluid must have
zero velocity at the wall, rise to a maximum and fall to zero in the
interior. The peak velocity must occur within dT, and there will be
non-zero velocity beyond dT where the fluid is driven by the diffu-
sion of momentum by viscosity from the region accelerated by
buoyancy. The full thickness of the region over which the velocity
occurs is some length scale O(dn), denoted the viscous boundary
layer. The form of the temperature and velocity profiles is shown in
the schematic in Fig. 1(b); the length scale d is the distance between
the maximum velocity and the extent of the thermal boundary layer.
With increasing Pr, the thickness of the viscous boundary layer dn

increases relative to the thickness of the thermal boundary layer dT.
It is now instructive to examine the balances in each of the three

regions I, II and III shown in Fig. 1(b).
In both regions I and II, the initial balance in the vertical

momentum equation is between the buoyancy and viscous terms,
so long as the scale (12) holds. Thus, in region I, 0wnv2y=vx2 þ gbT .
Integrating this across region I, that is between 0 and (dT� d),
noting that vy/vx w 0 at (dT� d), and approximating

R dT�d
0 Tdx

DTðt=tW ÞðdT � dÞ yields

ymw
gbDT

n

t
tW
ðdT � dÞ2 (13)

In region II, the first integral is taken between (dT� d) and dT, again
noting that vy/vx w 0 at (dT� d), approximating
vy=vxjdT

wym=ðdn � dT þ dÞ and
R dT

dT�d TdxwDTðt=tW Þd yields

ymw
gbDT

n

t
tW

dðdn � dT þ dÞ (14)

Here, the scale (dn� dTþ d) is used in the viscous term as this is the
length over which the velocity reduces from its maximum value to
zero.

These two velocity scales must be the same, so

ymw
gbDT

n
ðdT � dÞ2 t

tW
w

gbDT
n

dðdn � dT þ dÞ t
tW

or dw
d2

T
dn þ dT

(15)

In region III, the flow is driven solely by the diffusion of momentum
from region II. The appropriate balance here is between
the unsteady term and the viscous term, so that ym=twnym=d2

n ,
leading to

dnwn1=2t1=2wPr1=2dT (16)

where in (16) the viscous term is taken over the full viscous
boundary layer width. Then, from (10), dwdT=ð1þ Pr1=2Þ and
consequently the velocity scale is, from (13) or (14)
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ymw
Rak2
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t2
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�
1� 1

1þ Pr1=2

�2

(17)

The flow in the period that the initial thermal balance is between
conduction and unsteady temperature growth is then described by
the length scales (12) and (16), and the velocity scale (17). The
temperature is described by the scale OðDTt=tW Þ, so long as t< tW.

The boundary layer flow is also convecting heat away, and
the boundary layer growth will change character when the
convection balances conduction, that is at time t0 when
ymDTðt0=tW Þ=HwkDTðt0=tW Þ=d 2

T where ym and dT are evaluated
at t0. This gives

t0w
H4=3t1=3

W

Ra1=3k2=3
�

1� 1
1þPr1=2

�2=3
(18)

so long as t0< tW. At this time the boundary layer will have reached
a quasi-steady state; the original thermal balance between heat
conduction and temperature growth no longer holds and the
further heating which continues since t0< tW simply accelerates
the fluid sufficiently to carry the additional heat away.

The requirement that t0< tW may be shown to be equivalent to
the condition that

tW >
H2

Ra1=2k
�

1� 1
1þPr1=2

� (19)

This time scale is the same as the time scale tC that an instanta-
neously started boundary layer will reach the same conduction –
convection balance [19]. Thus, if tW< tC the increasing heating has
finished before the boundary layer has reached the quasi-steady
state. Further, the velocity and boundary layer thickness scales at tW

are identical to those from the instantaneously started boundary
layer at that time. In other words, if tW< tC, the boundary layer will
subsequently follow the same development as the instantaneous
case and become steady at tC, and the scales will be identical to the
instantaneous heating case; the boundary layer will not be affected
at all by the presence of the ramp. That outcome is intuitively
expected; if the ramp time is sufficiently short, the result will be the
same as though the start up were instantaneous.

On the other hand, if tW> tC then t0< tW and the boundary
layer will reach a quasi-steady state at t0, and for t0< t< tW, the
boundary layer will continue to develop, governed by a balance
between convection and conduction. Thus, for t0< t< tW,
ymDTðt=tW Þ=HwkDTðt=tW Þ=d2

T where now dT is no longer governed
by (12). This gives

ymw
kH

d2
T

(20)

The same balances between buoyancy and viscosity still apply in
regions I and II, so that (15) applies. Further, since the boundary
layer is in a quasi-steady state, the balance in region III is between
advection and diffusion of momentum, so that

ymw
nH

d2
n

(21)

and again d w dT/1þ Pr1/2.
Using this result the velocity given by the balance in region I is

ymwðgbDTd 2
T =nÞð1� 1=ð1þ Pr1=2ÞÞ2ðt=tW Þ. Together with (20),

a scale for dT may be obtained
dT w
H

Ra1=4
�

1� 1
1þPr1=2

�1=2

�
tW

t

�1=4

(22)

and a corresponding scale for ym

ymw
Ra1=2k

H

�
1� 1

1þ Pr1=2

��
t

tW

�1=2

(23)

Corresponding scales for the viscous boundary layer thickness dn

and the position of the velocity maximum (dT� d) are readily
obtained. It is seen from (22) and (23) that, in this quasi-steady
stage of the boundary layer development, the velocity increases,
but the boundary layer thickness decreases with time. At t w tW,
the boundary layer becomes steady, with thickness dT and velocity
ym given by

dTW w
H

Ra1=4
�

1� 1
1þPr1=2

�1=2
(24)

ymW w
Ra1=2k

H

�
1� 1

1þ Pr1=2

�
(25)

In summary, if t0< tW the boundary layer grows and accelerates
according to (12) and (17) until time t0; it then contracts but
accelerates further in a quasi steady mode until tW, following (22)
and (23). For t> tW, the flow is steady and is described by (24) and
(25). For t0> tW the boundary layer follows (12) and (17) until the
end of the ramp at t w tW. At tW, the flow and temperature fields are
the same as for an instantaneous start up at the corresponding
time, and the further development beyond tW is identical to that for
an instantaneous start up [19].
4. Numerical procedures

To verify the various scales, numerical solution of the full
equations of motion and energy are obtained for a range of Ra and
Pr values, and the results, scaled by non dimensionalised forms of
the various scale values above, are shown to approximately collapse
onto a single line. In the following, time, velocity and length are
scaled by H2/k, k/H and H respectively, and the temperature
difference from T0 is scaled by DT.

The equations are solved on a domain �0.2� y� Y, 0� x� X
where X and Y are the non dimensional width and non dimensional
height respectively. For Pr¼ 7, the width is set to X¼ 0.5 and the
height to Y¼ 1.5. For the remaining Pr values, X¼ 2.0 and Y¼ 6.0.
The origin of the coordinate system is located at the leading edge of
the heated plate, at x¼ 0, y¼ 0. The increased width for the larger
Pr values is necessary to accommodate the increased width of the
viscous boundary layer. Domain dependency tests were carried out
to ensure that the far field boundary conditions were not signifi-
cantly affecting the detailed results presented below. The following
boundary conditions, in non dimensional form, are applied

u ¼ y ¼ 0; for x ¼ 0; y � 0
T ¼ t

tW
; for x ¼ 0; y � 0 and 0 � t � tW ;

T ¼ 1; for x ¼ 0; y � 0 and t > tW ;
u ¼ y ¼ vT

vx ¼ 0; for x ¼ 0; �0:2 � y < 0
vu
vx
¼ y ¼ vT

vx
¼ 0; for x ¼ X; �0:2 � y � Y ;

v2u
vy2 ¼

v2y

vy2 ¼
v2T
vy2 ¼ 0; for 0 � x � X; y ¼ Y

u ¼ y ¼ vT
vy ¼ 0; for 0 � x � X; y ¼ �0:2

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(26)



Fig. 2. (a) The unscaled temperature profiles for two times for each of the simulation
cases. (b) Scaled temperature profiles plotted against scaled distance for the times in
(a). The profiles are for the case 0< t< t0.

Fig. 3. (a) The unscaled velocity profiles for the same two times as in Fig. 2 for each of
the simulation cases. (b) Scaled velocity profiles plotted against the position scaled by
the location of the velocity maximum for the times in (a). The profiles are for the case
0< t< t0.
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These are effectively open boundary conditions for a semi infinite
plate configuration, which is appropriate here [5]. The fluid is
initially isothermal, at temperature T0, and quiescent.

The full equations are discretised on a non-staggered mesh using
finite volumes, with standard second order central difference
schemes used for the viscous, pressure gradient and divergence
terms. The QUICK third order upwind scheme [15], which has been
widely used for buoyancy affected flows (eg, [24,28]) is used for
the advective terms. The second order Adams–Bashforth scheme and
the Crank–Nicolson scheme are used for the time integration of the
advective terms and the diffusive terms respectively. To enforce
continuity, the pressure correction method is used to construct
a Poisson’s equation which is solved using a preconditioned GMRES
method. Detailed descriptions of these schemes are given in [2,3,8],
and the resultant code has been widely used for the simulation of
a range of buoyancy dominated flows (see eg, [4,6,18]).

The domain is discretised with a non uniform rectangular grid,
with the results presented below obtained with Dx¼ 1.0�10�3 at
the wall, expanding at a maximum rate of 10% away from the wall,
and Dy¼ 1.0�10�3 at y¼ 0, also expanding at a maximum rate of
10% away from y¼ 0. This gives a grid of 73�131 nodes in the x and
y directions respectively for the Pr¼ 7 case, and 136� 302 nodes
for the other cases. A time step of Dt¼ 2.0�10�8 is used for all
cases. Grid and time step dependency tests were undertaken, with
results obtained with half the minimum grid sizes and expansion
rates given above, and half the time steps. The variation between
the results was negligible.



Fig. 4. (a) The unscaled temperature profiles for two times for each of the simulation
cases. (b) Scaled temperature profiles plotted against scaled distance for the times in
(a). The profiles are for the case t0< t< tW.

Fig. 5. (a) The unscaled velocity profiles for the same two times as in Fig. 4 for each of
the simulation cases. (b) Scaled velocity profiles plotted against the position scaled by
the location of the velocity maximum for the times in (a). The profiles are for the case
t0< t< tW.
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In the following, velocity and temperature data are taken at
a height y¼ 1.0, which is sufficiently far from the leading edge and
the downstream end of the domain to avoid any end effects.
Further, the presence or otherwise of travelling waves on the
boundary layer associated with the Leading Edge Effect has not
been investigated here; that will be the focus of a study which will
include an investigation of the stability properties of the boundary
layer following this initiation.

5. Results

There are two basic scenarios in the development of the
boundary layer with a ramp function boundary condition: first,
the case in which the boundary layer reaches a quasi-steady state
before the ramp is completed; and second, the case in which the
ramp is completed before the boundary layer reaches the quasi-
steady state.

As noted above, in the first case, the boundary layer develops
following (12) and (17) until the time scale given by (18) is reached.
Following this time the boundary layer is in a quasi-steady state,
and is described by (22) and (23) until the end of the ramp is
reached, at which time the flow becomes steady, described by (24)
and (25).

In the second case, the boundary layer follows the development
(12) and (17) until the end of the ramp, at which time it follows the
description for instantaneous heating until steady state time is



Fig. 6. (a) The unscaled temperature profiles at steady state for all of the simulation cases.
(b) The temperature profiles at steady state scaled by the final wall temperature plotted
against position scaled by the steady state thermal boundary layer thickness, for all cases.

Fig. 7. (a) The unscaled velocity profiles at steady state for all of the simulation cases.
(b) The velocity profiles at steady state scaled by the steady state maximum velocity
plotted against the position scaled by the location of the velocity maximum, for all
cases.
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reached, given by (24) and (25). The first part of the development
up to time tW is identical to the first case and the period following
tW up until tC is described by [19] as part of the development of the
instantaneous start up. The steady state in both cases is the same.
Since the first stage and the steady state are both verified by an
examination of the case t0< tW, the case t0> tW is not discussed
further here. Using the non dimensionalisation given above, the
following scales apply:

dT wt1=2

dnwPr1=2dT

dT �dwdT

�
1� 1

1þPr1=2

�

ymwRat2

tW

�
1� 1

1þPr1=2

�2

9>>>>>>>>>>=
>>>>>>>>>>;

for t< t0w
t1=3
W

Ra1=3

1�
1� 1

1þPr1=2

�2=3
(27)
dT0wt1=2
0

dn0wPr1=2dT0

dT0 � d0wdT0

�
1� 1

1þPr1=2

�
ym0wRa1=3

t1=3
W

�
1� 1

1þPr1=2

�2=3

9>>>>>=
>>>>>;

for twt0 (28)
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�
1� 1
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�tW
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�1=4

dnwPr1=2dT

dT � dwdT

�
1� 1

1þPr1=2

�
ymwRa1=2

�
1� 1

1þPr1=2

��
t

tW

�1=2

9>>>>>>>>>>=
>>>>>>>>>>;

for t0 < t < tW (29)



Fig. 8. Time histories of the maximum velocity in the boundary layer for all simula-
tions. (a) Unscaled velocities. (b) Velocities scaled by ym0, the velocity scale value at the
time t0 at which a quasi-steady state is reached, plotted against (t/t0)2. (c) Velocities
scaled by the steady state value ymW plotted against (t/tW)1/2.

Fig. 9. Time histories of the thermal boundary layer thickness for all simulations. (a)
Unscaled thickness plotted against t. (b) The thickness scaled against the value at t0

plotted against t/t0. (c) The thickness scaled against the steady state scale plotted
against (t/tW)1/4.
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dTW w 1

Ra1=4

�
1� 1

�1=2 >>>>>

1þPr1=2

dnW wPr1=2dTW

dTW � dW wdTW

�
1� 1

1þPr1=2

�
ymW wRa1=2

�
1� 1

1þPr1=2

�

9
>>=
>>>>>>>;

for t � tW (30)

where all of the variables are non dimensional, and the scales now
depend only on Ra, Pr, t and tW.

The non dimensional wall temperature is given by

TWall ¼ 0 t < 0
TWall ¼ t

tW
0 � t � tW

TWall ¼ 1 tW < t
(31)

Simulations over the ranges of Ra, Pr and tW reported in Table 1
have been undertaken with the view of spanning the possible
regimes and verifying the various scaling relationships given above.
These include variations in all of Ra, Pr and tW. The Ra and Pr values
are chosen so that the ratio t0/tW lies between 0.05 and 0.27, to
ensure that t0< tW and that the ranges 0< t< t0 and t0< t< tW are
clearly identifiable, and a range of Pr values (7< Pr< 50) and Ra
values (106< Ra< 108) are explored.

Consider first the time period 0< t< t0. In this period, two time
instants less than t0 are chosen arbitrarily from each simulation.
Fig. 2(a) shows a group of temperature profiles, two from each of
the simulated cases. Here the non dimensional temperature is
plotted against the non dimensional position. Clearly, the boundary
layer thickness in each case increases with time, and the wall
temperature also increases with time, as expected.

Fig. 2(b) shows the same data in which the horizontal position
has been scaled by the thermal boundary layer thickness dT, given by
(27), at the appropriate times, and the temperature has been scaled
by the wall temperature (31), also at the given times. These profiles
are virtually indistinguishable, verifying the thickness scaling.

Fig. 3(a) shows a group of non dimensionalised but unscaled
velocity profiles, two from each simulation at the same times as
used in Fig. 2. In Fig. 3(b), the vertical velocity is scaled by the
transient velocity scale ym at the appropriate times, given by (27),
and the position is scaled by the position, at the appropriate times,
of the maximum velocity (dT� d), also given by (27), to test scaling
for the velocity maximum and its position. Both appear to be well
represented by the scaling, within acceptable limits. Consequently,
the scales (27) are verified by the simulation results. These same
results could have been achieved with any other combinations of
times selected, so long as the time is not too close to t0.

In the time period t0< t< tW the flow is in a quasi steady mode,
and is governed by the scales (29). Figs. 4 and 5 present the
temperature and velocity profiles from two arbitrary selected times
for each case in the same way as Figs. 2 and 3; that is, temperature is
scaled by the wall temperature at the appropriate times, the
velocity is scaled by the velocity scale at the appropriate times, and
the position by the same length scales as in Figs. 2 and 3, again at
the appropriate times, all taken from (29). Once again, the strong
Table 1
Details of the computations.

Run tW Pr Ra t0 t0/tW

1 0.01 7 106 2.7� 10�3 0.27
2 0.01 7 107 1.2� 10�3 0.12
3 0.01 7 108 5.7� 10�4 0.06
4 0.02 7 106 3.4� 10�3 0.17
5 0.03 7 106 3.8� 10�3 0.13
6 0.01 14 108 5.4� 10�4 0.05
7 0.01 25 108 5.2� 10�4 0.05
8 0.01 50 108 5.1� 10�4 0.05
coincidence of the scaled results verifies the scaling for the
boundary layer thickness scales, the position of the velocity
maximum and the maximum velocity in this second stage of the
flow development.

For t> tW, the boundary layer is in a steady state. Figs. 6 and 7
show the profiles of temperature and velocity for an arbitrarily
selected time for t> tW. In this case, the temperature is scaled by
the steady value of TWall; the velocity is scaled by ymW from (30). The
length scales used in the scaled plots are the steady state values of
dT and dT� d (dTW and dTW� dW) for Figs. 6(b) and 7(b) respectively.
Once again, the steady state temperature, velocity and thickness
scales are confirmed by the simulation results.

The overall time history is shown in Figs. 8 and 9. In Fig. 8(a),
the non dimensionalised maximum velocities ymax from all 8
simulations are shown. The three stages of the flow are clearly
shown; the initial development, the quasi-steady stage, and
steady state. In the first stage, the velocity varies with t2 up until
t0, when the velocity is ym0, given by (28). Fig. 8(b) shows the
velocity scaled by ym0, plotted against (t/t0)2; clearly the first part
of the plot is linear, indicating that the time variation is correct.
Further, all of the time series lie together, confirming the scaling
for velocity in this stage. The location of the end of the first stage
on this plot in each case coincides, confirming that the scaling for
t0 is correct. On this time scaling, only one of the time series
shows the transition to the steady state. In the second stage, the
velocity varies with t1/2; Fig. 8(c) shows the velocity scaled by the
steady state value ymW given by (30), plotted against (t/tW)1/2.
Once again the plots show a linear dependence on (t/tW)1/2 as
expected during the second part of the development. The location
of the start of the second stage at t w t0 of course varies in this plot
in which time is scaled by tW. Fig. 8(c) also serves to demonstrate
that the steady state velocity is predicted, with all of the time
series coinciding past t/tW w 1.

Fig. 9 gives the time history of the thermal boundary layer
thickness. The computed thickness has been determined by taking
the position where the temperature signal is 1% of the wall value.
Here the scaling suggests that the boundary layer thickness initially
increases as t1/2 until the time is t0, and then decreases as t�1/4.
Fig. 9(a) shows the non dimensional boundary layer thickness
plotted against non dimensional time; the behaviour suggested
clearly occurs. When the thickness is scaled by the scale value at t0,
that is dT0, given by (28), and the time scaled by t0, as shown in
Fig. 9(b), the plots all lie together until the end of the ramp at tW

occurs, when the layer thickness becomes constant. This occurs at
different values of t/t0, and the occurrence of steady state can
clearly be observed. Fig. 9(c) shows the dependence of the thick-
ness, scaled by the steady state thickness dTW, plotted against (t/
tW)1/4. This demonstrates, firstly, that the plots for all of the simu-
lations lie together and have a linear dependence on (t/tW)1/4 for the
quasi-steady stage (that is for t0< t< tW) as predicted by (29),
noting that in this scaling the values of t0/tW do not coincide for the
different cases; and secondly, that all of the steady state values lie
together for t> tW, as predicted by (30). Clearly the scales for the
boundary layer thickness dependence on time have been
confirmed by the simulations.

6. Conclusions

The value of scaling arguments lies in the ability to use the scales
derived to estimate the various properties of the flows, and the
dependence of the flows on the various parameters. In particular,
the success of a scaling analysis of a complex flow means that the
various balances in the various stages of the development of the
flow have been correctly identified, leading to an understanding of
the mechanisms of the flow.
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This relies on verification of the scaling, usually by numerical
simulation. By varying all of the parameters and examining the
simulation data in a scaled way, the coincidence of the scaled
results confirms that the scaling developed is correct.

In this paper the case of the start up of the boundary layer on
a vertical plate after heating which follows a linear increase in
temperature difference up to the final value DT over a prescribed
time period tW, that is, a ramp start up, has been examined for
a fluid with Pr [ 1. This is in contrast to the case of an instanta-
neous start up. The characteristic of the ramp start up is that, if the
ramp is sufficiently short, then the development follows a partic-
ular path until the end of the ramp and then develops as though the
start up were instantaneous. In other words, if the ramp is short
enough, the flow is indistinguishable from the instantaneous start
up case, as might be expected.

On the other hand, if the ramp time is sufficiently long, the flow
follows a path of development up until it reaches a quasi-steady
state, in which the further development is described by the main-
tenance of a balance between the conduction of heat through the
wall and the convection away by the flow. This is characterized by
a boundary layer which slowly accelerates but shrinks in thickness
until the end of the ramp. Once the end of the ramp is reached, the
flow is steady, and again the flow is identical to that ultimately
achieved from an instantaneous start up. So, although the final
result is the same, the ramp start up follows a distinctly different
path to that state. This different development may have implica-
tions for the stability properties of the transient boundary layer, or
for the development of the flow in a cavity of which one wall is
heated in this way.

The scaling analysis here is only valid for Pr [ 1; for Pr< 1
different mechanisms will be involved. Development and analysis
of that case is presently underway.
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